Search results
Results from the WOW.Com Content Network
A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.
Defining equation SI units Dimension Lens power P = / m −1 = D (dioptre) [L] −1: Lateral magnification m = / = / dimensionless dimensionless Angular magnification m = / dimensionless dimensionless
For a thin lens in air, the distance from the lens to the spot is the focal length of the lens, which is commonly represented by f in diagrams and equations. An extended hemispherical lens is a special type of plano-convex lens, in which the lens's curved surface is a full hemisphere and the lens is much thicker than the radius of curvature.
Distances in the thin lens equation. For a lens of negligible thickness, and focal length f, the distances from the lens to an object, S 1, and from the lens to its image, S 2, are related by the thin lens formula: + =.
For the purposes of ray tracing, this is equivalent to a series of identical thin lenses of focal length f = R/2, each separated from the next by length d. This construction is known as a lens equivalent duct or lens equivalent waveguide.
The main benefit of using optical power rather than focal length is that the thin lens formula has the object distance, image distance, and focal length all as reciprocals. Additionally, when relatively thin lenses are placed close together their powers approximately add. Thus, a thin 2.0-dioptre lens placed close to a thin 0.5-dioptre lens ...
In weak lensing by large-scale structure, the thin-lens approximation may break down, and low-density extended structures may not be well approximated by multiple thin-lens planes. In this case, the deflection can be derived by instead assuming that the gravitational potential is slowly varying everywhere (for this reason, this approximation is ...
For a thin lens in air, the location of the image is given by the simple equation 1 S 1 + 1 S 2 = 1 f , {\displaystyle {\frac {1}{S_{1}}}+{\frac {1}{S_{2}}}={\frac {1}{f}},} where S 1 is the distance from the object to the lens, θ 2 is the distance from the lens to the image, and f is the focal length of the lens.