enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The result is an equation with no fractions. The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth.

  3. Cancelling out - Wikipedia

    en.wikipedia.org/wiki/Cancelling_out

    For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a × b = a × c , then the multiplicative term a can be canceled out if a ≠0, resulting in the equivalent expression b = c ; this is equivalent to dividing through by a .

  4. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 / 2 ⁠, − ⁠ 8 / 5 ⁠, ⁠ −8 / 5 ⁠, and ⁠ 8 / −5 ⁠

  5. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    This is a common procedure in mathematics, used to reduce fractions or calculate a value for a given variable in a fraction. If we have an equation =, where x is a variable we are interested in solving for, we can use cross-multiplication to determine that =.

  6. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    To begin solving, we multiply each side of the equation by the least common denominator of all the fractions contained in the equation. In this case, the least common denominator is () (+). After performing these operations, the fractions are eliminated, and the equation becomes:

  7. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).

  8. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    By the commutative law, the middle two terms cancel: = leaving (+) = The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring.

  9. Conversion of units - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_units

    Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity. [5] Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour, 10 miles per hour converts to 4.4704 metres per second.