Search results
Results from the WOW.Com Content Network
where for every direction in the base space, S n, the fiber over it in the total space, SO(n + 1), is a copy of the fiber space, SO(n), namely the rotations that keep that direction fixed. Thus we can build an n × n rotation matrix by starting with a 2 × 2 matrix, aiming its fixed axis on S 2 (the ordinary sphere in three-dimensional space ...
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
Pole figure and diffraction figure. Consider the diffraction pattern obtained with a single crystal, on a plane that is perpendicular to the beam, e.g. X-ray diffraction with the Laue method, or electron diffraction in a transmission electron microscope. The diffraction figure shows spots. The position of the spots is determined by the Bragg's ...
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...
The trajectory of a point can be written as a function of time as {ξ 10 + ω 1 t, η 0, ξ 20 + ω 2 t} and stereographically projected onto its associated torus, as in the figures below. [8] In these figures, the initial point is taken to be {0, π / 4 , 0}, i.e. on the Clifford torus. In Fig. 1, two simple rotation trajectories are ...
System in open-loop. If the closed-loop dynamics can be represented by the state space equation (see State space (controls)) _ ˙ = _ + _, with output equation _ = _ + _, then the poles of the system transfer function are the roots of the characteristic equation given by
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
The set of coordinates that define the position of a reference point and the orientation of a coordinate frame attached to a rigid body in three-dimensional space form its configuration space, often denoted () where represents the coordinates of the origin of the frame attached to the body, and () represents the rotation matrices that define the orientation of this frame relative to a ground ...