Search results
Results from the WOW.Com Content Network
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...
The moment of inertia is the 2nd moment of mass: = for a point mass, for a collection of point masses, or () for an object with mass distribution (). The center of mass is often (but not always) taken as the reference point.
The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.
In physics, moment of inertia is strictly the second moment of mass with respect to distance from an axis: =, where r is the distance to some potential rotation axis, and the integral is over all the infinitesimal elements of mass, dm, in a three-dimensional space occupied by an object Q. The MOI, in this sense, is the analog of mass for ...
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
r cm is the position vector of the center of mass of the body with respect to the point about which moments are summed, a cm is the linear acceleration of the center of mass of the body, m is the mass of the body, α is the angular acceleration of the body, and; I is the moment of inertia of the body about its center of mass.