Search results
Results from the WOW.Com Content Network
A carbocation is an ion with a positively charged carbon atom. Among the simplest examples are the methenium CH + 3, methanium CH + 5, acylium ions RCO +, and vinyl C ...
The vinyl cation is a carbocation with the positive charge on an alkene carbon. Its empirical formula of the parent ion is C 2 H + 3.Vinyl cation are invoked as reactive intermediates in solvolysis of vinyl halides, [1] [2] as well as electrophilic addition to alkynes and allenes.
The benzyl cation or phenylcarbenium ion is the carbocation with formula C 6 H 5 CH + 2; the benzyl anion or phenylmethanide ion is the carbanion with the formula C 6 H 5 CH − 2. None of these species can be formed in significant amounts in the solution phase under normal conditions, but they are useful referents for discussion of reaction ...
The chemical basis for Markovnikov's Rule is the formation of the most stable carbocation during the addition process. Adding the hydrogen ion to one carbon atom in the alkene creates a positive charge on the other carbon, forming a carbocation intermediate.
E1 and E2 are two different mechanisms for elimination reactions, and E1 involves a carbocation intermediate. In E1, a leaving group detaches from a carbon to form a carbocation reaction intermediate. Then, a solvent removes a proton, but the electrons used to form the proton bond form a pi bond, as shown in the pictured reaction on the right. [4]
The 2-Norbornyl cation is one of the best characterized carbonium ion. It is the prototype for non-classical ions. As indicated first by low-temperature NMR spectroscopy and confirmed by X-ray crystallography, [1] it has a symmetric structure with an RCH 2 + group bonded to an alkene group, stabilized by a bicyclic structure.
The carbocation then can interact with surrounding molecules in many reactions that cannot be achieved by other means. When formed within a rarefied gas, the carbocation and its reactions can be studied by mass spectrometry techniques. However the technique can be used also in condensed matter (liquids and solids).
Thus, H + attacks the carbon atom that carries fewer substituents so as the more stabilized carbocation (with the more stabilizing substituents) will form. This is another example of an Ad E 2 mechanism. [5] Hydrogen fluoride (HF) and hydrogen iodide (HI) react with alkenes in a similar manner, and Markovnikov-type products will be given.