Search results
Results from the WOW.Com Content Network
In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).
Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter.
Sometimes it really is, but in general it is not. Especially, Z is distributed uniformly on (-1,+1) and independent of the ratio Y/X, thus, P ( Z ≤ 0.5 | Y/X) = 0.75. On the other hand, the inequality z ≤ 0.5 holds on an arc of the circle x 2 + y 2 + z 2 = 1, y = cx (for any given c). The length of the arc is 2/3 of the length of the circle.
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution.
A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...
The Poisson–Boltzmann equation describes a model proposed independently by Louis Georges Gouy and David Leonard Chapman in 1910 and 1913, respectively. [3] In the Gouy-Chapman model, a charged solid comes into contact with an ionic solution, creating a layer of surface charges and counter-ions or double layer. [4]
An Urn A has 1 black ball and 2 white balls and another Urn B has 1 black ball and 3 white balls. Suppose we pick an urn at random and then select a ball from that urn. Let event A {\displaystyle A} be choosing the first urn, i.e. P ( A ) = P ( A ¯ ) = 1 / 2 {\displaystyle \mathbb {P} (A)=\mathbb {P} ({\overline {A}})=1/2} , where A ...