enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".

  4. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    A. 1685. Graph of the equation y = 1/x. Here, e is the unique number larger than 1 that makes the shaded area under the curve equal to 1. The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.

  5. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Power of two. A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. Powers of two with non-negative exponents are integers: 20 = 1, 21 = 2, and 2n is two multiplied by itself n times. [1][2] The first ten powers of 2 for non-negative ...

  6. dBm - Wikipedia

    en.wikipedia.org/wiki/DBm

    A 3 dB increase in level is approximately equivalent to doubling the power, which means that a level of 3 dBm corresponds roughly to a power of 2 mW. Similarly, for each 3 dB decrease in level, the power is reduced by about one half, making −3 dBm correspond to a power of about 0.5 mW.

  7. Orders of magnitude (numbers) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)

    1.5 × 10 −157 is approximately equal to the probability that in a randomly selected group of 365 people, all of them will have different birthdays. [3] 1 × 10 −101 is equal to the smallest non-zero value that can be represented by a single-precision IEEE decimal floating-point value.

  8. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The term superexponentiation was published by Bromer in his paper Superexponentiation in 1987. [3] It was used earlier by Ed Nelson in his book Predicative Arithmetic, Princeton University Press, 1986. The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration.

  9. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition. [41]