Search results
Results from the WOW.Com Content Network
Pulse width is an important measure in radar systems. Radars transmit pulses of radio frequency energy out of an antenna and then listen for their reflection off of target objects. The amount of energy that is returned to the radar receiver is a function of the peak energy of the pulse, the pulse width, and the pulse repetition frequency.
Pulse-width modulation (PWM), also known as pulse-duration modulation (PDM) or pulse-length modulation (PLM), [1] is any method of representing a signal as a rectangular wave with a varying duty cycle (and for some methods also a varying period). PWM is useful for controlling the average power or amplitude delivered by an electrical signal.
For example, a signal (10101010) has 50% duty cycle, because the pulse remains high for 1/2 of the period or low for 1/2 of the period. Similarly, for pulse (10001000) the duty cycle will be 25% because the pulse remains high only for 1/4 of the period and remains low for 3/4 of the period. Electrical motors typically use less than a 100% duty ...
The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its duration. For example, a one-microsecond pulse has a Rayleigh bandwidth of one megahertz. [1] The essential bandwidth is defined as the portion of a signal spectrum in the frequency domain which contains most of the energy of the signal. [2]
The pulse-repetition frequency (PRF) ... (209 million cycles per second) and a PRF of 300 or 500 pulses per second. A related measure is the pulse width, ...
A simple calculation reveals that a radar echo will take approximately 10.8 μs to return from a target 1 statute mile away (counting from the leading edge of the transmitter pulse (T 0), (sometimes known as transmitter main bang)). For convenience, these figures may also be expressed as 1 nautical mile in 12.4 μs or 1 kilometre in 6.7 μs.
Half width at half maximum (HWHM) is half of the FWHM if the function is symmetric. The term full duration at half maximum (FDHM) is preferred when the independent variable is time . FWHM is applied to such phenomena as the duration of pulse waveforms and the spectral width of sources used for optical communications and the resolution of ...
In this example there are 1000 pulses per second (one kilohertz pulse rate) with a gated pulse width of 42 μs. The pulse packet frequency in this example is 27.125 MHz of RF energy. The duty cycle for a pulsed radio frequency is the percent time the RF packet is on, 4.2% for this example ([0.042 ms × 1000 pulses divided by 1000 ms/s] × 100).