enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    for v, v 1, v 2V, w, w 1, w 2W, and α ∈ K. The resulting vector space is called the direct sum of V and W and is usually denoted by a plus symbol inside a circle: It is customary to write the elements of an ordered sum not as ordered pairs (v, w), but as a sum v + w. The subspace V × {0} of VW is isomorphic to V and is often ...

  3. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    An element in the direct product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both.

  4. Semisimple representation - Wikipedia

    en.wikipedia.org/wiki/Semisimple_representation

    Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple ...

  5. Lie algebra representation - Wikipedia

    en.wikipedia.org/wiki/Lie_algebra_representation

    (That is, if W is an invariant subspace, then there is another invariant subspace P such that V is the direct sum of W and P.) If is a finite-dimensional semisimple Lie algebra over a field of characteristic zero and V is finite-dimensional, then V is semisimple; this is Weyl's complete reducibility theorem. [4]

  6. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    Determining whether a given subspace W is invariant under T is ostensibly a problem of geometric nature. Matrix representation allows one to phrase this problem algebraically. Write V as the direct sum WW′; a suitable W′ can always be chosen by extending a basis of W. The associated projection operator P onto W has matrix representation

  7. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A given direct sum decomposition of into complementary subspaces still specifies a projection, and vice versa. If X {\displaystyle X} is the direct sum X = U ⊕ V {\displaystyle X=U\oplus V} , then the operator defined by P ( u + v ) = u {\displaystyle P(u+v)=u} is still a projection with range U {\displaystyle U} and kernel V {\displaystyle V} .

  8. Direct sum of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_groups

    The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...

  9. Symplectic vector space - Wikipedia

    en.wikipedia.org/wiki/Symplectic_vector_space

    Formally, the symmetric algebra of a vector space V over a field F is the group algebra of the dual, Sym(V) := F[V ∗], and the Weyl algebra is the group algebra of the (dual) Heisenberg group W(V) = F[H(V ∗)]. Since passing to group algebras is a contravariant functor, the central extension map H(V) → V becomes an inclusion Sym(V) → W(V).