Search results
Results from the WOW.Com Content Network
for v, v 1, v 2 ∈ V, w, w 1, w 2 ∈ W, and α ∈ K. The resulting vector space is called the direct sum of V and W and is usually denoted by a plus symbol inside a circle: It is customary to write the elements of an ordered sum not as ordered pairs (v, w), but as a sum v + w. The subspace V × {0} of V ⊕ W is isomorphic to V and is often ...
An element in the direct product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both.
Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple ...
(That is, if W is an invariant subspace, then there is another invariant subspace P such that V is the direct sum of W and P.) If is a finite-dimensional semisimple Lie algebra over a field of characteristic zero and V is finite-dimensional, then V is semisimple; this is Weyl's complete reducibility theorem. [4]
Determining whether a given subspace W is invariant under T is ostensibly a problem of geometric nature. Matrix representation allows one to phrase this problem algebraically. Write V as the direct sum W ⊕ W′; a suitable W′ can always be chosen by extending a basis of W. The associated projection operator P onto W has matrix representation
A given direct sum decomposition of into complementary subspaces still specifies a projection, and vice versa. If X {\displaystyle X} is the direct sum X = U ⊕ V {\displaystyle X=U\oplus V} , then the operator defined by P ( u + v ) = u {\displaystyle P(u+v)=u} is still a projection with range U {\displaystyle U} and kernel V {\displaystyle V} .
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
Formally, the symmetric algebra of a vector space V over a field F is the group algebra of the dual, Sym(V) := F[V ∗], and the Weyl algebra is the group algebra of the (dual) Heisenberg group W(V) = F[H(V ∗)]. Since passing to group algebras is a contravariant functor, the central extension map H(V) → V becomes an inclusion Sym(V) → W(V).