Search results
Results from the WOW.Com Content Network
The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the ...
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
An abelian category [4] C is called semi-simple if there is a collection of simple objects , i.e., ones with no subobject other than the zero object 0 and itself, such that any object X is the direct sum (i.e., coproduct or, equivalently, product) of finitely many simple objects.
Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple ...
(That is, if W is an invariant subspace, then there is another invariant subspace P such that V is the direct sum of W and P.) If g {\displaystyle {\mathfrak {g}}} is a finite-dimensional semisimple Lie algebra over a field of characteristic zero and V is finite-dimensional, then V is semisimple; this is Weyl's complete reducibility theorem . [ 4 ]
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
The vector space of complex-valued class functions of a group has a natural -invariant inner product structure, described in the article Schur orthogonality relations.Maschke's theorem was originally proved for the case of representations over by constructing as the orthogonal complement of under this inner product.
Given two I-graded vector spaces V and W, their direct sum has underlying vector space V ⊕ W with gradation ( V ⊕ W ) i = V i ⊕ W i . If I is a semigroup , then the tensor product of two I -graded vector spaces V and W is another I -graded vector space, V ⊗ W {\displaystyle V\otimes W} , with gradation