Search results
Results from the WOW.Com Content Network
Soil microorganisms can be classified as bacteria, actinomycetes, fungi, algae and protozoa. Each of these groups has characteristics that define them and their functions in soil. [6] [7] Up to 10 billion bacterial cells inhabit each gram of soil in and around plant roots, a region known as the rhizosphere.
[10] [11] Soil temperature influences biological and biochemical processes in soil, playing an important role in microbial and enzymatic activities, mineralization and organic matter decomposition. [12] Air is vital for respiration in soil organisms and in plant growth. [13] Both wind and atmospheric pressure play critical roles in soil ...
The plant microbiome, also known as the phytomicrobiome, plays roles in plant health and productivity and has received significant attention in recent years. [1] [2] The microbiome has been defined as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties.
Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface.
Some nitrogen originates from rain as dilute nitric acid and ammonia, [44] but most of the nitrogen is available in soils as a result of nitrogen fixation by bacteria. Once in the soil-plant system, most nutrients are recycled through living organisms, plant and microbial residues (soil organic matter), mineral-bound forms, and the soil solution.
The combined domains of archaea and bacteria make up the most diverse and abundant group of organisms on Earth and inhabit practically all environments where the temperature is below +140 °C (284 °F). They are found in water, soil, air, as the microbiome of an organism, hot springs and even deep beneath the Earth's crust in rocks. [48]
The root microbiome (also called rhizosphere microbiome) is the dynamic community of microorganisms associated with plant roots. [1] Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi, and archaea.
Agricultural microbiology is a branch of microbiology dealing with plant-associated microbes and plant and animal diseases. It also deals with the microbiology of soil fertility, such as microbial degradation of organic matter and soil nutrient transformations.