Search results
Results from the WOW.Com Content Network
The Parks–McClellan algorithm, published by James McClellan and Thomas Parks in 1972, is an iterative algorithm for finding the optimal Chebyshev finite impulse response (FIR) filter. The Parks–McClellan algorithm is utilized to design and implement efficient and optimal FIR filters.
A typical example of a Chebyshev space is the subspace of Chebyshev polynomials of order n in the space of real continuous functions on an interval, C[a, b]. The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.
This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])
In numerical analysis, the ITP method (Interpolate Truncate and Project method) is the first root-finding algorithm that achieves the superlinear convergence of the secant method [1] while retaining the optimal [2] worst-case performance of the bisection method. [3]
Aitken interpolation is an algorithm used for polynomial interpolation that was derived by the mathematician Alexander Aitken. It is similar to Neville's algorithm . See also Aitken's delta-squared process or Aitken extrapolation .
The Alexander–Hirschowitz theorem shows that a specific collection of k double points in the P^r will impose independent types of conditions on homogenous polynomials and the hypersurface of d with many known lists of exceptions. [1]