Search results
Results from the WOW.Com Content Network
Conditional move instructions write the contents of one register over another only if the predicate's value is true, whereas conditional select instructions choose which of two registers has its contents written to a third based on the predicate's value. A more generalized and capable form is full predication. Full predication has a set of ...
Automatic vectorization, in parallel computing, is a special case of automatic parallelization, where a computer program is converted from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation, which processes one operation on multiple pairs of operands at once.
In computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an imperative programming language from a declarative programming language.
Automatic parallelization, also auto parallelization, or autoparallelization refers to converting sequential code into multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a shared-memory multiprocessor machine. [1]
This simple control table directs program flow according to the value of the single input variable. Each table entry holds a possible input value to be tested for equality (implied) and a relevant subroutine to perform in the action column. The name of the subroutine could be replaced by a relative subroutine number if pointers are not supported
For example, both a 5 stage in-order pipeline and a large out of order CPU implement the same assembly language execution model. The execution model is the definition of the behavior, so all implementations, whether in-order or out-of-order or interpreted or JIT'd etc.. must all give the exact same result, and that result is defined by the ...
Predictive execution is a form of speculative execution where some outcome is predicted and execution proceeds along the predicted path until the actual result is known. If the prediction is true, the predicted execution is allowed to commit; however, if there is a misprediction, execution has to be unrolled and re-executed.
In order to determine whether rearranging the block's instructions in a certain way preserves the behavior of that block, we need the concept of a data dependency. There are three types of dependencies, which also happen to be the three data hazards: Read after Write (RAW or "True"): Instruction 1 writes a value used later by Instruction 2.