enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Reflection_coefficient

    In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.

  3. Reflections of signals on conducting lines - Wikipedia

    en.wikipedia.org/wiki/Reflections_of_signals_on...

    A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...

  4. Standing wave ratio - Wikipedia

    en.wikipedia.org/wiki/Standing_wave_ratio

    2 Relationship to the reflection coefficient. 3 The standing wave pattern. ... When there is a mismatch between the load impedance and the transmission line, part of ...

  5. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The last-mentioned relation, however, will make it convenient to derive the reflection coefficients in terms of the wave admittance Y, which is the reciprocal of the wave impedance Z. In the case of uniform plane sinusoidal waves, the wave impedance or admittance is known as the intrinsic impedance or admittance of the medium.

  6. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...

  7. Mismatch loss - Wikipedia

    en.wikipedia.org/wiki/Mismatch_loss

    Mismatch loss in transmission line theory is the amount of power expressed in decibels that will not be available on the output due to impedance mismatches and signal reflections. A transmission line that is properly terminated, that is, terminated with the same impedance as that of the characteristic impedance of the transmission line, will ...

  8. Signal reflection - Wikipedia

    en.wikipedia.org/wiki/Signal_reflection

    If only reflection magnitudes are desired, however, and exact fault locations are not required, VSWR bridges perform a similar but lesser function for RF cables. The combination of the effects of signal attenuation and impedance discontinuities on a communications link is called insertion loss .

  9. Return loss - Wikipedia

    en.wikipedia.org/wiki/Return_loss

    In telecommunications, return loss is a measure in relative terms of the power of the signal reflected by a discontinuity in a transmission line or optical fiber.This discontinuity can be caused by a mismatch between the termination or load connected to the line and the characteristic impedance of the line.