Search results
Results from the WOW.Com Content Network
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
For s polarization, the reflection coefficient r is defined as the ratio of the reflected wave's complex electric field amplitude to that of the incident wave, whereas for p polarization r is the ratio of the waves complex magnetic field amplitudes (or equivalently, the negative of the ratio of their
In telecommunications, return loss is a measure in relative terms of the power of the signal reflected by a discontinuity in a transmission line or optical fiber.This discontinuity can be caused by a mismatch between the termination or load connected to the line and the characteristic impedance of the line.
Reflectivity is the square of the magnitude of the Fresnel reflection coefficient, [4] which is the ratio of the reflected to incident electric field; [5] as such the reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance is always a positive real number.
The visual frequency orientation (clockwise vs. counter-clockwise) enables one to differentiate between a negative / capacitance and positive / inductive whose reflection coefficients are the same when plotted on a 2D Smith chart, but whose orientations diverge as frequency increases.
This is correct for reflection coefficients with a magnitude no greater than unity, which is usually the case. A reflection coefficient with a magnitude greater than unity, such as in a tunnel diode amplifier, will result in a negative value for this expression. VSWR, however, from its definition, is always positive.
In optics, the Hagen–Rubens relation (or Hagen–Rubens formula) is a relation between the coefficient of reflection and the conductivity for materials that are good conductors. [1] The relation states that for solids where the contribution of the dielectric constant to the index of refraction is negligible, the reflection coefficient can be ...
In the event that most of the echo is from first surface reflections (^ < or so), the OC radar albedo is a first-order approximation of the Fresnel reflection coefficient (aka reflectivity) [83] and can be used to estimate the bulk density of a planetary surface to a depth of a meter or so (a few wavelengths of the radar wavelength which is ...