Ads
related to: hypersurface geometry formula chart images printable worksheetseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Guided Lessons
Search results
Results from the WOW.Com Content Network
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
It can be viewed as a formula for the Laplacian of the second fundamental form of a Riemannian submanifold. It is often quoted and used in the less precise form of a formula or inequality for the Laplacian of the length of the second fundamental form. In the case of a hypersurface M of Euclidean space, the formula asserts that
In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.
In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =
One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomial = + + + + Computing the partial derivatives of gives the four polynomials = = = = = Since the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since [::::] is not a point in .
Ads
related to: hypersurface geometry formula chart images printable worksheetseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch