enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  4. Distributed parameter system - Wikipedia

    en.wikipedia.org/wiki/Distributed_parameter_system

    In control theory, a distributed-parameter system (as opposed to a lumped-parameter system) is a system whose state space is infinite-dimensional. Such systems are therefore also known as infinite-dimensional systems. Typical examples are systems described by partial differential equations or by delay differential equations.

  5. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    In a linear system the phase space is the N-dimensional Euclidean space, so any point in phase space can be represented by a vector with N numbers. The analysis of linear systems is possible because they satisfy a superposition principle : if u ( t ) and w ( t ) satisfy the differential equation for the vector field (but not necessarily the ...

  6. Quantum logic - Wikipedia

    en.wikipedia.org/wiki/Quantum_logic

    In the classical case, given a proposition p, the equations ⊤ = p∨q and ⊥ = p∧q. have exactly one solution, namely the set-theoretic complement of p. In the case of the lattice of projections there are infinitely many solutions to the above equations (any closed, algebraic complement of p solves it; it need not be the orthocomplement).

  7. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    However, since s is an unphysical parameter, physical states must be left invariant by "s-evolution", and so the physical state space is the kernel of H − E (this requires the use of a rigged Hilbert space and a renormalization of the norm). This is related to the quantization of constrained systems and quantization of gauge theories. It is ...

  8. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    Thus the set of all states of M with the weak-* topology forms a compact Hausdorff space, known as the state space of M. In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected ...

  9. Quantum state space - Wikipedia

    en.wikipedia.org/wiki/Quantum_state_space

    In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.