Search results
Results from the WOW.Com Content Network
Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y 3 Al 5 O 12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant , neodymium in the +3 oxidation state, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are ...
The laser is intended to selectively remove diseased or infected pocket epithelium from the underlying connective tissue. The Nd:YAG laser has been shown to reduce levels of microbial pathogens in periodontal pockets [3] and vaporize the pocket-lining epithelium without causing damage to the underlying connective tissue. [4] [5]
The first laser, invented by Theodore Maiman in May 1960. Nd:YAG laser: 1.064 μm, (1.32 μm) Flashlamp, laser diode: Material processing, rangefinding, laser target designation, surgery, tattoo removal, hair removal, research, pumping other lasers (combined with frequency doubling to produce a green 532 nm beam). One of the most common high ...
Download as PDF; Printable version; ... YAG laser may refer to two types of lasers that use yttrium aluminum garnet (YAG): Nd:YAG laser (doped with ...
The neodymium (Nd) and neodymium yttrium-aluminium-garnet lasers are identical in style and differ only in the application. Nd is used for boring and where high energy but low repetition are required. The Nd:YAG laser is used where very high power is needed and for boring and engraving. Both CO 2 and Nd/Nd:YAG lasers can be used for welding. [13]
Blue DPSSLs use a nearly identical process, except that the 808 nm light is being converted by an Nd:YAG crystal to 946 nm light (selecting this non-principal spectral line of neodymium in the same Nd-doped crystals), which is then frequency-doubled to 473 nm by a beta barium borate (BBO) crystal or LBO crystal. Because of the lower gain for ...
This means the area highlighted by the HeNe laser is not precisely the area being affected Nd:YAG laser, and therefore some surgical lasers have an added adjustment to compensate. [2] The first successful use of photodisruption was in 1972, on a case of trabecular meshwork. [1]
Examples of solid-state laser media include Nd:YAG, Ti:sapphire, Cr:sapphire (usually known as ruby), Cr:LiSAF (chromium-doped lithium strontium aluminium fluoride), Er:YLF, Nd:glass, and Er:glass. Solid-state lasers are usually pumped by flashlamps or light from another laser. Semiconductors, a type of solid, crystal with uniform dopant ...