Search results
Results from the WOW.Com Content Network
The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. [1] A free radical is any atom or molecule that has a single unpaired electron in an outer shell. [2] While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly ...
Molecular contributors to ageing (reactive oxygen species, mitochondrial unfolded protein response, mitochondrial metabolites, damage-associated molecular patterns, mitochondrial-derived peptides, mitochondrial membrane) Mitochondria are thought to be organelles that developed from endocytosed bacteria which learned to coexist inside ancient cells.
In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O 2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O 2 H), superoxide (O 2-), [1] hydroxyl radical (OH.), and singlet oxygen. [2] ROS are pervasive because they are readily produced from O 2, which is ...
Mechanistically, replicative senescence can be triggered by a DNA damage response due to the shortening of telomeres.Cells can also be induced to senesce by DNA damage in response to elevated reactive oxygen species (ROS), activation of oncogenes, and cell-cell fusion.
Mitochondrial ROS can promote cellular senescence and aging phenotypes in the skin of mice. [11] Ordinarily mitochondrial SOD2 protects against mitochondrial ROS. Epidermal cells in mutant mice with a genetic SOD2 deficiency undergo cellular senescence, nuclear DNA damage, and irreversible arrest of proliferation in a portion of their keratinocytes.
Catalase is an enzyme that removes hydrogen peroxide, a reactive oxygen species, and thus limits oxidative DNA damage. In mice, when catalase expression is increased specifically in mitochondria, oxidative DNA damage (8-OHdG) in skeletal muscle is decreased and lifespan is increased by about 20%.
In wild-type budding yeast Saccharomyces cerevisiae nuclear DNA fragmentation increased 3-fold during cellular aging, whereas in the absence of SOD2 nuclear DNA fragmentation increased by 5-fold during aging. [23] Production of reactive oxygen species also increased with cellular age, but by a greater amount in SOD2 mutant cells than in wild ...
Termination can occur when two lipid hydroperoxyl radicals (LOO•) react to form peroxide and oxygen (O 2). [3] [clarification needed] Termination can also occur when the concentration of radical species is high. [citation needed] The primary products of lipid peroxidation are lipid hydroperoxides (LOOH). [3]