Search results
Results from the WOW.Com Content Network
A cosmic event horizon is a real event horizon because it affects all kinds of signals, including gravitational waves, which travel at the speed of light. More specific horizon types include the related but distinct absolute and apparent horizons found around a black hole.
The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
In Schwarzschild's original paper, he put what we now call the event horizon at the origin of his coordinate system. In this paper he also introduced what is now known as the Schwarzschild radial coordinate (r in the equations above), as an auxiliary variable. In his equations, Schwarzschild was using a different radial coordinate that was zero ...
Combining the formulas for the Schwarzschild radius of the black hole, the Stefan–Boltzmann law of blackbody radiation, the above formula for the temperature of the radiation, and the formula for the surface area of a sphere (the black hole's event horizon), several equations can be derived. The Hawking radiation temperature is: [2] [22] [23]
The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell ...
The particle horizon differs from the cosmic event horizon, in that the particle horizon represents the largest comoving distance from which light could have reached the observer by a specific time, while the cosmic event horizon is the largest comoving distance from which light emitted now can ever reach the observer in the future. [3]