enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Soil microbiology - Wikipedia

    en.wikipedia.org/wiki/Soil_Microbiology

    These bacteria could fix nitrogen, in time multiplied, and as a result released oxygen into the atmosphere. [2] [3] This led to more advanced microorganisms, [4] [5] which are important because they affect soil structure and fertility. Soil microorganisms can be classified as bacteria, actinomycetes, fungi, algae and protozoa. Each of these ...

  3. Agricultural microbiology - Wikipedia

    en.wikipedia.org/wiki/Agricultural_microbiology

    These microorganisms consist of naturally occurring microbes, such as photosynthesizing bacteria, lactic acid bacteria, yeasts, and fermenting fungi, which can be applied to increase soil microbial diversity. The application of effective microorganisms improves soil structure and fertility while significantly boosting biological diversity.

  4. Soil biology - Wikipedia

    en.wikipedia.org/wiki/Soil_biology

    Bacteria live in soil water, including the film of moisture surrounding soil particles, and some are able to swim by means of flagella. The majority of the beneficial soil-dwelling bacteria need oxygen (and are thus termed aerobic bacteria), whilst those that do not require air are referred to as anaerobic , and tend to cause putrefaction of ...

  5. Biofertilizer - Wikipedia

    en.wikipedia.org/wiki/Biofertilizer

    Microorganism function is in long duration, causing improvement of the soil fertility. It maintains the natural habitat of the soil. It increases crop yield by 20-30%, replaces chemical nitrogen and phosphorus by 30%, and stimulates plant growth. It can also provide protection against drought and some soil-borne diseases.

  6. Root microbiome - Wikipedia

    en.wikipedia.org/wiki/Root_microbiome

    The root microbiome (also called rhizosphere microbiome) is the dynamic community of microorganisms associated with plant roots. [1] Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi, and archaea.

  7. Topsoil - Wikipedia

    en.wikipedia.org/wiki/Topsoil

    Bacteria and fungi can be essential in facilitating nutrient exchange with plants and in breaking down organic matter into a form that roots can absorb. Insects also play important roles in breaking down material and aerating and rotating the soil. Many species directly contribute to the health of the soil resulting in stronger plants. [1]

  8. Soil ecology - Wikipedia

    en.wikipedia.org/wiki/Soil_ecology

    [10] [11] Soil temperature influences biological and biochemical processes in soil, playing an important role in microbial and enzymatic activities, mineralization and organic matter decomposition. [12] Air is vital for respiration in soil organisms and in plant growth. [13] Both wind and atmospheric pressure play critical roles in soil ...

  9. Biological soil crust - Wikipedia

    en.wikipedia.org/wiki/Biological_soil_crust

    Microorganisms like those that make up biological soil crust are good at responding quickly to changes in the environment even after a period of dormancy such as precipitation. Desiccation can lead to oxidation and the destruction of nutrients, amino acids, and cell membranes in the microorganisms that make up biological soil crust. [16]