Search results
Results from the WOW.Com Content Network
The convergent nozzle was replaced with a C-D nozzle on the same engine J57 in the same aircraft F-101. The increased thrust from the C-D nozzle (2,000 lb, 910 kg at sea-level take-off) on this engine raised the speed from Mach 1.6 to almost 2.0 enabling the Air Force to set a world's speed record of 1,207.6 mph (1,943.4 km/h) which was just ...
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
Exhaust or nozzle — Turbine exhaust gases pass through the propelling nozzle to produce a high velocity jet. The nozzle is usually convergent with a fixed flow area. Supersonic nozzle — For high nozzle pressure ratios (Nozzle Entry Pressure/Ambient Pressure) a convergent-divergent (de Laval) nozzle is used. The expansion to atmospheric ...
A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat). In this ...
Many small business owners put in long hours to help their ideas prove fruitful, a phenomenon called sweat equity. According to a New York Enterprise Report cited by SCORE, 33 percent of small ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Small business owners face severe penalties if they don't report to the federal government by year's end. Thousands of businesses may not realize they are subject to a new reporting process ...
A nozzle for a supersonic flow must increase in area in the flow direction, and a diffuser must decrease in area, opposite to a nozzle and diffuser for a subsonic flow. So, for a supersonic flow to develop from a reservoir where the velocity is zero, the subsonic flow must first accelerate through a converging area to a throat, followed by ...