Search results
Results from the WOW.Com Content Network
The core of the Sun is considered to extend from the center to about 0.2 of the solar radius (139,000 km; 86,000 mi). [1] It is the hottest part of the Sun and of the Solar System.
The Sun is the star at the center of the Solar System.It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies.
In the Sun, the region between the solar core at 0.2 of the Sun's radius and the outer convection zone at 0.71 of the Sun's radius is referred to as the radiation zone, although the core is also a radiative region. [1] The convection zone and the radiative zone are divided by the tachocline, another part of the Sun.
[31] [32] Eventually, the core will be hot enough for helium fusion; the Sun will burn helium for a fraction of the time it burned hydrogen in the core. The Sun is not massive enough to commence the fusion of heavier elements, and nuclear reactions in the core will dwindle.
A stellar core is the extremely hot, dense region at the center of a star. ... (10 MK), while the density at the core of the Sun is over 100 ...
Jupiter’s core, according to researchers, can reach temperatures of around 30,000 Kelvin, or about 53,000 degrees Fahrenheit. Surprisingly, the hottest temperature in the universe can be found a ...
In main sequence stars more than 1.3 times the mass of the Sun, the high core temperature causes nuclear fusion of hydrogen into helium to occur predominantly via the carbon-nitrogen-oxygen (CNO) cycle instead of the less temperature-sensitive proton–proton chain. The high temperature gradient in the core region forms a convection zone that ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!