Search results
Results from the WOW.Com Content Network
If a and b are rational numbers, the equation x 5 + ax + b = 0 is solvable by radicals if either its left-hand side is a product of polynomials of degree less than 5 with rational coefficients or there exist two rational numbers ℓ and m such that
With modern computers and programs, deciding whether a polynomial is solvable by radicals can be done for polynomials of degree greater than 100. [6] Computing the solutions in radicals of solvable polynomials requires huge computations. Even for the degree five, the expression of the solutions is so huge that it has no practical interest.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
If no such polynomial exists then the number is called transcendental. More generally the theory deals with algebraic independence of numbers. A set of numbers {α 1, α 2, …, α n} is called algebraically independent over a field K if there is no non-zero polynomial P in n variables with coefficients in K such that P(α 1, α 2, …, α n) = 0.
The Barth surface, shown in the figure is the geometric representation of the solutions of a polynomial system reduced to a single equation of degree 6 in 3 variables. Some of its numerous singular points are visible on the image. They are the solutions of a system of 4 equations of degree 5 in 3 variables.
The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]
In the case of a system of n polynomial equations in n unknowns, the problem is solved by Bézout's theorem, which asserts that, if the number of complex solutions is finite, their number is bounded by the product of the degrees of the polynomials.
Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. [1]