Search results
Results from the WOW.Com Content Network
For n equal to 2 this is called the principal square root and the n is omitted. The nth root can also be represented using exponentiation as x 1/n. For even values of n, positive numbers also have a negative nth root, while negative numbers do not have a real nth root.
has no real number solution since no real number squared equals −1. Sometimes a quadratic equation has a root of multiplicity 2, such as: (+) = For this equation, −1 is a root of multiplicity 2. This means −1 appears twice, since the equation can be rewritten in factored form as
and is the positive root of the equation x 2 − x − n = 0. For n = 1, this root is the golden ratio φ, approximately equal to 1.618. The same procedure also works to obtain, if n > 0, = (+ +), which is the positive root of the equation x 2 + x − n = 0.
Let z 0 be a root of a holomorphic function f, and let n be the least positive integer such that the n th derivative of f evaluated at z 0 differs from zero. Then the power series of f about z 0 begins with the n th term, and f is said to have a root of multiplicity (or “order”) n. If n = 1, the root is called a simple root. [4]
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.