Search results
Results from the WOW.Com Content Network
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per amount of substance, rather than energy per temperature increment per particle.
kinetic energy: joule (J) wave vector: radian per meter (m −1) Boltzmann constant: joule per kelvin (J/K) wavenumber: radian per meter (m −1) stiffness: newton per meter (N⋅m −1) ^ Cartesian z-axis basis unit vector unitless angular momentum
It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ. When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. r = V π h {\displaystyle r={\sqrt {\frac {V}{\pi h}}}} and θ = arcsin τ r F . {\displaystyle \theta =\arcsin ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics , there are no "centre of charge" or "centre of electrostatic attraction" analogues.
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
Get user-friendly email with AOL Mail. Sign up now for world-class spam protection, easy inbox management, and an email experience tailored to you.
The energy that a physical body possesses due to its motion, defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. The body continues to maintain this kinetic energy unless its velocity changes. Contrast potential energy. Kirchhoff's circuit laws. Also called Kirchhoff's rules or simply Kirchhoff's laws.