Search results
Results from the WOW.Com Content Network
Computational Fluid Dynamics (CFD) modeling and simulation for phase change materials (PCMs) is a technique used to analyze the performance and behavior of PCMs. The CFD models have been successful in studying and analyzing the air quality, natural ventilation and stratified ventilation, air flow initiated by buoyancy forces and temperature space for the systems integrated with PCMs.
A numerical solution to the one dimensional Allen-Cahn equation. The Allen–Cahn equation (after John W. Cahn and Sam Allen) is a reaction–diffusion equation of mathematical physics which describes the process of phase separation in multi-component alloy systems, including order-disorder transitions.
A single realization of a one-dimensional Wiener process A single realization of a three-dimensional Wiener process. In mathematics, the Wiener process (or Brownian motion, due to its historical connection with the physical process of the same name) is a real-valued continuous-time stochastic process discovered by Norbert Wiener.
A computer simulation of high velocity air flow around the Space Shuttle during re-entry A simulation of the Hyper-X scramjet vehicle in operation at Mach-7. The fundamental basis of almost all CFD problems is the Navier–Stokes equations, which define many single-phase (gas or liquid, but not both) fluid flows.
The inertial model is much more complex than we typically need but it is the most simple to use. In this model, we do not need to change our forces or constrain our system. However, if we make a few intelligent changes to our system, simulation will become much easier, and our calculation time will decrease.
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
An illustration of fluid simulation using VOF method. In computational fluid dynamics, the volume of fluid (VOF) method is a family of free-surface modelling techniques, i.e. numerical techniques for tracking and locating the free surface (or fluid–fluid interface).
Adaptive mesh refinement (AMR) changes the spacing of grid points, to change how accurately the solution is known in that region. In the shallow water example, the grid might in general be spaced every few feet—but it could be adaptively refined to have grid points every few inches in places where there are large waves.