enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  3. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    Important to applications in mathematics and physics [1] is the notion of a flow on a manifold. In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to .

  4. Congruence (manifolds) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(manifolds)

    In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold. Congruences are an important concept in general relativity , and are also important in parts of Riemannian geometry .

  5. John M. Lee - Wikipedia

    en.wikipedia.org/wiki/John_M._Lee

    Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.

  6. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.

  7. Category:Smooth manifolds - Wikipedia

    en.wikipedia.org/wiki/Category:Smooth_manifolds

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  8. Template:Lee Introduction to Smooth Manifolds/doc - Wikipedia

    en.wikipedia.org/wiki/Template:Lee_Introduction...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more

  9. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.