Search results
Results from the WOW.Com Content Network
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
492 is close to 500, which is easy to multiply by. Add and subtract 8 (the difference between 500 and 492) to get 492 -> 484, 500. Multiply these numbers together to get 242,000 (This can be done efficiently by dividing 484 by 2 = 242 and multiplying by 1000). Finally, add the difference (8) squared (8 2 = 64) to the result: 492 2 = 242,064
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case). 94 quarters is 23 cwt and 2 qtr, so place the 2 in the answer and put the 23 in the next column left.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
Since 2 represents 20, all numbers in that scale are multiplied by 10. Thus, any answer in the second set of numbers is multiplied by 100. Since 8.8 in the top scale represents 88, the answer must additionally be multiplied by 10. The answer directly reads 1.76. Multiply by 100 and then by 10 to get the actual answer: 1,760.
In a wider sense, it also includes exponentiation, extraction of roots, and logarithm. [2] The term arithmetic has its root in the Latin term arithmetica which derives from the Ancient Greek words ἀριθμός ( arithmos ), meaning ' number ' , and ἀριθμητική τέχνη ( arithmetike tekhne ), meaning ' the art of counting ' .
The method for general multiplication is a method to achieve multiplications with low space complexity, i.e. as few temporary results as possible to be kept in memory. . This is achieved by noting that the final digit is completely determined by multiplying the last digit of the multiplic