Search results
Results from the WOW.Com Content Network
The 18-electron rule is a chemical rule of thumb used primarily for predicting and rationalizing formulas for stable transition metal complexes, especially organometallic compounds. [1] The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five ( n −1)d orbitals, one n s orbital ...
From the perspective of the 18-electron rule, the four ligands each provides two electrons, for a total of 16-electrons. As such the compound is coordinatively unsaturated , i.e. susceptible to binding substrates (alkenes and H 2 ).
Download as PDF; Printable version; ... The formulae of many metal carbonyls can be inferred from the 18-electron rule ... Perhaps the earliest application was the ...
The 18-electron rule is helpful in predicting the stabilities of organometallic complexes, for example metal carbonyls and metal hydrides. The 18e rule has two representative electron counting models, ionic and neutral (also known as covalent) ligand models, respectively. [7] The hapticity of a metal-ligand complex, can influence the electron ...
Toggle Reactions and applications subsection. ... Download as PDF; Printable version ... The formula conforms to the 18-electron rule and the complex adopts ...
As is the case for many other η 1-allyl complexes, the monohapticity of the allyl ligand in this species is enforced by the 18-electron rule, since CpFe(CO) 2 (η 1-C 3 H 5) is already an 18-electron complex, while an η 3-allyl ligand would result in an electron count of 20 and violate the 18-electron rule.
Quantum chemical calculations using density functional theory confirm that Ca, Sr, and Ba can indeed utilize their (n-1)d in bonding to satisfy the 18-electron rule. [1] [6] These computational results support the hypothesis that alkaline earth octacarbonyl complexes follow the 18-electron rule and are comparable to carbonyl transition metal ...
These complexes are isoelectronic and, incidentally, both obey the 18-electron rule. The formal description of nitric oxide as NO + does not match certain measureable and calculated properties. In an alternative description, nitric oxide serves as a 3-electron donor, and the metal-nitrogen interaction is a triple bond. linear and bent M-NO bonds