Search results
Results from the WOW.Com Content Network
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
The activity selection problem is also known as the Interval scheduling maximization problem (ISMP), which is a special type of the more general Interval Scheduling problem. A classic application of this problem is in scheduling a room for multiple competing events, each having its own time requirements (start and end time), and many more arise ...
List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.
interval order: Each job has an interval [s x,e x) and job is a predecessor of if and only if the end of the interval of is strictly less than the start of the interval for .= In the presence of a precedence relation one might in addition assume time lags. The time lag between two jobs is the amount of time that must be waited after the first ...
Single-machine scheduling or single-resource scheduling is an optimization problem in computer science and operations research. We are given n jobs J 1 , J 2 , ..., J n of varying processing times, which need to be scheduled on a single machine, in a way that optimizes a certain objective, such as the throughput .
Modulo scheduling: an algorithm for generating software pipelining, which is a way of increasing instruction level parallelism by interleaving different iterations of an inner loop. Trace scheduling: the first practical approach for global scheduling, trace scheduling tries to optimize the control flow path that is executed most often.
The open-shop scheduling problem can be solved in polynomial time for instances that have only two workstations or only two jobs. It may also be solved in polynomial time when all nonzero processing times are equal: in this case the problem becomes equivalent to edge coloring a bipartite graph that has the jobs and workstations as its vertices, and that has an edge for every job-workstation ...
Greedy number partitioning (also called the Largest Processing Time in the scheduling literature) loops over the numbers, and puts each number in the set whose current sum is smallest. If the numbers are not sorted, then the runtime is O ( n ) {\displaystyle O(n)} and the approximation ratio is at most 2 − 1 / k {\displaystyle 2-1/k} .