Search results
Results from the WOW.Com Content Network
An orthogonal array is simple if it does not contain any repeated rows. (Subarrays of t columns may have repeated rows, as in the OA(18, 7, 3, 2) example pictured in this section.) An orthogonal array is linear if X is a finite field F q of order q (q a prime power) and the rows of the array form a subspace of the vector space (F q) k. [2]
An alternate representation of a Latin square is given by an orthogonal array. For a Latin square of order n this is an n 2 × 3 matrix with columns labeled r, c and s and whose rows correspond to a single position of the Latin square, namely, the row of the position, the column of the position and the symbol in the position. Thus for the order ...
An orthogonal array, OA(k,n), of strength two and index one is an n 2 × k array A (k ≥ 2 and n ≥ 1, integers) with entries from a set of size n such that within any two columns of A (strength), every ordered pair of symbols appears in exactly one row of A (index). [33] An OA(s + 2, n) is equivalent to s MOLS(n). [33]
Orthogonal array testing is a systematic and statistically-driven black-box testing technique employed in the field of software testing. [ 1 ] [ 2 ] This method is particularly valuable in scenarios where the number of inputs to a system is substantial enough to make exhaustive testing impractical.
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
Orthogonal arrays; A quasi-3 design is a symmetric design (SBIBD) in which each triple of blocks intersect in either x or y points, for fixed x and y called the triple intersection numbers (x < y). Any symmetric design with λ ≤ 2 is a quasi-3 design with x = 0 and y = 1.
The definition of a Latin square can be written in terms of orthogonal arrays: A Latin square is a set of n 2 triples ( r , c , s ), where 1 ≤ r , c , s ≤ n , such that all ordered pairs ( r , c ) are distinct, all ordered pairs ( r , s ) are distinct, and all ordered pairs ( c , s ) are distinct.
About the same time, C. R. Rao introduced the concepts of orthogonal arrays as experimental designs. This concept played a central role in the development of Taguchi methods by Genichi Taguchi, which took place during his visit to Indian Statistical Institute in early 1950s. His methods were successfully applied and adopted by Japanese and ...