Search results
Results from the WOW.Com Content Network
Toggle the table of contents. List of boiling and freezing information of solvents. 7 languages. ... Solvent Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol)
In gas chromatography, the Kovats retention index (shorter Kovats index, retention index; plural retention indices) is used to convert retention times into system-independent constants. The index is named after the Hungarian-born Swiss chemist Ervin Kováts , who outlined the concept in the 1950s while performing research into the composition ...
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
An R F value will always be in the range 0 to 1; if the substance moves, it can only move in the direction of the solvent flow, and cannot move faster than the solvent. For example, if particular substance in an unknown mixture travels 2.5 cm and the solvent front travels 5.0 cm, the retardation factor would be 0.50.
As such, headspace gas chromatography offers a method for determining if there is natural biodegradation processes occurring in contaminated aquifers. [5] For example, fuel hydrocarbons will break down into methane. Chlorinated solvents such as trichloroethylene, break down into ethene and chloride.
The GC-VUV method uses a flow rate of 4 mL/min and an oven ramp of 35 °C (held for 1 min), followed by an increase to 245 °C at a rate of 30 °C/min. Figure 5 compares the results when the general conditions of the GC-MS method were followed against the GC-VUV method run with Class 2 residual solvents.
Toggle the table of contents. Resolution (chromatography) 1 language. ... where t R is the retention time and w b is the peak width at baseline. The bigger the time ...
The distribution constant (or partition ratio) (K D) is the equilibrium constant for the distribution of an analyte in two immiscible solvents. [1] [2] [3]In chromatography, for a particular solvent, it is equal to the ratio of its molar concentration in the stationary phase to its molar concentration in the mobile phase, also approximating the ratio of the solubility of the solvent in each phase.