Search results
Results from the WOW.Com Content Network
The main application of statistical power is "power analysis", a calculation of power usually done before an experiment is conducted using data from pilot studies or a literature review. Power analyses can be used to calculate the minimum sample size required so that one can be reasonably likely to detect an effect of a given size (in other ...
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.
Several methods have been developed to impose the essential boundary conditions weakly, including Lagrange multipliers, Nitche's method, and the penalty method. As for quadrature , nodal integration is generally preferred which offers simplicity, efficiency, and keeps the meshfree method free of any mesh (as opposed to using Gauss quadrature ...
The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...
Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!
An example is the derivative operator of calculus, /, which is a linear operator acting on functions () to give a new function (/) = ′ (). The n th power of the differentiation operator is the n th derivative: