enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  3. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Rather than storing the structure of the code tree explicitly, canonical Huffman codes are ordered in such a way that it suffices to only store the lengths of ...

  4. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    A greedy algorithm is used to construct a Huffman tree during Huffman coding where it finds an optimal solution. In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction.

  5. Adaptive Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Huffman_coding

    Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.

  6. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source.

  7. Deflate - Wikipedia

    en.wikipedia.org/wiki/DEFLATE

    As an alternative to including the tree representation, the "static tree" option provides standard fixed Huffman trees. The compressed size using the static trees can be computed using the same statistics (the number of times each symbol appears) as are used to generate the dynamic trees, so it is easy for a compressor to choose whichever is ...

  8. File:Huffman coding example.svg - Wikipedia

    en.wikipedia.org/wiki/File:Huffman_coding...

    The picture is an example of Huffman coding. Colors make it clearer, but they are not necessary to understand it (according to Wikipedia's guidelines): probability is shown in red, binary code is shown in blue inside a yellow frame. For a more detailed description see below (I couldn't insert a table here). Date: 18 May 2007: Source: self-made

  9. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A tree whose root node has two subtrees, both of which are full binary trees. A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full ...