Search results
Results from the WOW.Com Content Network
A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid (or F-plasmid), used for transforming and cloning in bacteria, usually E. coli. [ 1 ] [ 2 ] [ 3 ] F-plasmids play a crucial role because they contain partition genes that promote the even distribution of plasmids after bacterial cell division.
Artificial cells used for drug delivery differ from other artificial cells since their contents are intended to diffuse out of the membrane, or be engulfed and digested by a host target cell. Often used are submicron, lipid membrane artificial cells that may be referred to as nanocapsules, nanoparticles, polymersomes, or other variations of the ...
Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work ; for example, many protein -based molecular motors harness the chemical free energy ...
In biology and ecology, a resource is a substance or object in the environment required by an organism for normal growth, maintenance, and reproduction. Resources can be consumed by one organism and, as a result, become unavailable to another organism. [1] [2] [3] For plants key resources are light, nutrients, water, and space to
Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, Saccharomyces cerevisiae, which is then ligated into a bacterial plasmid. By inserting large fragments of DNA, from 100–1000 kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking .
In 2020, it was announced that Google's AlphaFold, a neural network based on DeepMind artificial intelligence, is capable of predicting a protein's final shape based solely on its amino-acid chain with an accuracy of around 90% on a test sample of proteins used by the team.
The goal of synthetic biology is to generate an array of tunable and characterized parts, or modules, with which any desirable synthetic biological circuit can be easily designed and implemented. [2] These circuits can serve as a method to modify cellular functions, create cellular responses to environmental conditions, or influence cellular ...
where N j is the density of species j, R is the density of the resource, a is the rate at which species j eats the resource, d is species js death rate, and r is the rate at which resources grow when not consumed. It is easy to show that when species j is at equilibrium by itself (i.e., dN j /dt = 0), that the equilibrium resource density, R* j, is