enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.

  3. Linear–quadratic–Gaussian control - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic...

    It concerns linear systems driven by additive white Gaussian noise. The problem is to determine an output feedback law that is optimal in the sense of minimizing the expected value of a quadratic cost criterion. Output measurements are assumed to be corrupted by Gaussian noise and the initial state, likewise, is assumed to be a Gaussian random ...

  4. Additive white Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Additive_white_Gaussian_noise

    Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.

  5. Additive noise differential privacy mechanisms - Wikipedia

    en.wikipedia.org/wiki/Additive_noise...

    Analogous to Laplace mechanism, Gaussian mechanism adds noise drawn from a Gaussian distribution whose variance is calibrated according to the sensitivity and privacy parameters. For any δ ∈ ( 0 , 1 ) {\displaystyle \delta \in (0,1)} and ϵ ∈ ( 0 , 1 ) {\displaystyle \epsilon \in (0,1)} , the mechanism defined by:

  6. Total variation denoising - Wikipedia

    en.wikipedia.org/wiki/Total_variation_denoising

    The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.

  7. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    Shape of the impulse response of a typical Gaussian filter. In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would have infinite impulse response).

  8. Fractional Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Fractional_Brownian_motion

    The increment process X(t) is known as fractional Gaussian noise. There is also a generalization of fractional Brownian motion: n-th order fractional Brownian motion, abbreviated as n-fBm. [1] n-fBm is a Gaussian, self-similar, non-stationary process whose increments of order n are stationary. For n = 1, n-fBm is classical fBm.

  9. Noise generator - Wikipedia

    en.wikipedia.org/wiki/Noise_generator

    Multistate noise looks somewhat like flicker ( ) noise. The effect is process dependent, but it can be minimized. Diodes may also be selected for low multistate noise. [10] A commercial example of an avalanche diode noise generator is the Agilent 346C that covers 10 MHz to 26.5 GHz. [11]