Search results
Results from the WOW.Com Content Network
Geometric realization of a 3-dimensional abstract simplicial complex. In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family.
In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes.It includes as a special case the Erdős–Ko–Rado theorem and can be restated in terms of uniform hypergraphs.
A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).
An abstract simplicial complex (ASC) is family of sets that is closed under taking subsets (the subset of a set in the family is also a set in the family). Every abstract simplicial complex has a unique geometric realization in a Euclidean space as a geometric simplicial complex (GSC), where each set with k elements in the ASC is mapped to a (k-1)-dimensional simplex in the GSC.
Let Δ be an abstract simplicial complex of dimension d − 1 with f i i-dimensional faces and f −1 = 1. These numbers are arranged into the f-vector of Δ, = (,, …,).An important special case occurs when Δ is the boundary of a d-dimensional convex polytope.
Constructing the Čech complex of a set of points sampled from a circle. In algebraic topology and topological data analysis, the Čech complex is an abstract simplicial complex constructed from a point cloud in any metric space which is meant to capture topological information about the point cloud or the distribution it is drawn from.
Given an abstract simplicial complex X and a vertex in (), its link (,) is a set containing every face such that and {} is a face of X.. In the special case in which X is a 1-dimensional complex (that is: a graph), (,) contains all vertices such that {,} is an edge in the graph; that is, (,) = = the neighborhood of in the graph.
Simplicial homology is defined by a simple recipe for any abstract simplicial complex. It is a remarkable fact that simplicial homology only depends on the associated topological space. [2]: sec.8.6 As a result, it gives a computable way to distinguish one space from another.