enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  3. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    The +, -, and * operators for mathematical addition, subtraction, and multiplication are similar to other languages, but the behavior of division differs. There are two types of divisions in Python: floor division (or integer division) // and floating-point/division. [103] Python uses the ** operator for exponentiation.

  4. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).

  5. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    In the division of 43 by 5, we have: 43 = 8 × 5 + 3, so 3 is the least positive remainder. We also have that: 43 = 9 × 5 − 2, and −2 is the least absolute remainder. These definitions are also valid if d is negative, for example, in the division of 43 by −5, 43 = (−8) × (−5) + 3, and 3 is the least positive remainder, while,

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    With the example in view, a number of details can be discussed. The most important is the choice of the representation of the big number. In this case, only integer values are required for digits, so an array of fixed-width integers is adequate. It is convenient to have successive elements of the array represent higher powers of the base.

  8. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4. Arbitrary precision floating point numbers are included in the standard library math/bigfloat module. Raku: Rakudo supports Int and FatRat data types that promote to arbitrary-precision integers and rationals.

  9. Semipredicate problem - Wikipedia

    en.wikipedia.org/wiki/Semipredicate_problem

    A signed integer halves the possible index range to be able to store the sign bit. While the chosen value is an invalid result for this operation, it might be a valid input to followup operations. For example in Python str.find returns −1 if the substring is not found, [2] but −1 is a valid index (negative indices generally start from the ...