enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f , then f is said to be differentiable at x 0 if the derivative f ′ ( x 0 ) {\displaystyle f'(x_{0})} exists.

  3. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    Constantin Carathéodory's alternative definition of the differentiability of a function can be used to give an elegant proof of the chain rule. [6] Under this definition, a function f is differentiable at a point a if and only if there is a function q, continuous at a and such that f(x) − f(a) = q(x)(x − a).

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  5. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    Let be a function in the Lebesgue space ([,]).We say that in ([,]) is a weak derivative of if ′ = ()for all infinitely differentiable functions with () = =.. Generalizing to dimensions, if and are in the space () of locally integrable functions for some open set, and if is a multi-index, we say that is the -weak derivative of if

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  7. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    If a real-valued, differentiable function f, defined on an interval I of the real line, has zero derivative everywhere, then it is constant, as an application of the mean value theorem shows. The assumption of differentiability can be weakened to continuity and one-sided differentiability of f. The version for right differentiable functions is ...

  8. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  9. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    To be a C r-loop, the function γ must be r-times continuously differentiable and satisfy γ (k) (a) = γ (k) (b) for 0 ≤ k ≤ r. The parametric curve is simple if | (,): (,) is injective. It is analytic if each component function of γ is an analytic function, that is, it is of class C ω.