Search results
Results from the WOW.Com Content Network
The 3H-model of motivation ("3H" stands for the "three components of motivation") was developed by professor Hugo M. Kehr, PhD., at UC Berkeley. [1] The 3C-model is an integrative, empirically validated theory of motivation that can be used for systematic motivation diagnosis and intervention.
Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
Relations that satisfy certain combinations of the above properties are particularly useful, and thus have received names by their own. Equivalence relation A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order
A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.
A relation R is quasitransitive if, and only if, it is the disjoint union of a symmetric relation J and a transitive relation P. [2] J and P are not uniquely determined by a given R; [3] however, the P from the only-if part is minimal. [4] As a consequence, each symmetric relation is quasitransitive, and so is each transitive relation. [5]
Theory X and Theory Y were both developed by Douglas McGregor, a social psychologist interested in the characteristics of successful organizations. McGregor's book, The Human Side of Enterprise (1960), described Theories X and Y based upon Maslow's original hierarchy of needs. McGregor grouped the hierarchy into a lower order (Theory X) needs ...
A relation is connex if and only if its complement is asymmetric. A non-example is the "less than or equal" relation ≤ {\displaystyle \leq } . This is not asymmetric, because reversing for example, x ≤ x {\displaystyle x\leq x} produces x ≤ x {\displaystyle x\leq x} and both are true.
Many of the structures that are studied in order theory employ order relations with further properties. In fact, even some relations that are not partial orders are of special interest. Mainly the concept of a preorder has to be mentioned. A preorder is a relation that is reflexive and transitive, but not necessarily antisymmetric.