Search results
Results from the WOW.Com Content Network
MurmurHash is a non-cryptographic hash function suitable for general hash-based lookup. [1] [2] [3] It was created by Austin Appleby in 2008 [4] and, as of 8 January 2016, [5] is hosted on GitHub along with its test suite named SMHasher.
512–4096 bit NIST Prime 192, 224, 256, 384, 521 Microchip/Atmel. ATECC508A (compatible with any MPU or MCU including: Atmel SMART and AVR MCUs) 256 bit (NIST-P256) Intel QuickAssist Technology: 512–4096 bit 128, 256 bit Freescale NXP LTC: 512 - 4096 bit 128, 256 bit 128, 256 bit 256 bit 256 bit Xilinx Zynq UltraScale+: 2048–4096 bit
AES speed at 128, 192 and 256-bit key sizes. [clarification needed] [citation needed]Rijndael is free for any use public or private, commercial or non-commercial. [1] The authors of Rijndael used to provide a homepage [2] for the algorithm.
In cryptography, Curve25519 is an elliptic curve used in elliptic-curve cryptography (ECC) offering 128 bits of security (256-bit key size) and designed for use with the Elliptic-curve Diffie–Hellman (ECDH) key agreement scheme. It is one of the fastest curves in ECC, and is not covered by any known patents. [1]
AES key schedule for a 128-bit key. Define: N as the length of the key in 32-bit words: 4 words for AES-128, 6 words for AES-192, and 8 words for AES-256; K 0, K 1, ... K N-1 as the 32-bit words of the original key; R as the number of round keys needed: 11 round keys for AES-128, 13 keys for AES-192, and 15 keys for AES-256 [note 4] W 0, W 1, ...
It is a very fast sub-type of LFSR generators. Marsaglia also suggested as an improvement the xorwow generator, in which the output of a xorshift generator is added with a Weyl sequence. The xorwow generator is the default generator in the CURAND library of the nVidia CUDA application programming interface for graphics processing units.
Millions of Americans should prepare for an Arctic blast that will blanket much of the country in below-freezing temperatures over the next several days. Frigid conditions are expected over a ...
The DEC VAX supported operations on 128-bit integer ('O' or octaword) and 128-bit floating-point ('H-float' or HFLOAT) datatypes. Support for such operations was an upgrade option rather than being a standard feature. Since the VAX's registers were 32 bits wide, a 128-bit operation used four consecutive registers or four longwords in memory.