Search results
Results from the WOW.Com Content Network
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
Poincaré disk with hyperbolic parallel lines Poincaré disk model of the truncated triheptagonal tiling.. In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or ...
Arc distances on a great circle are the same as the distance between the same points on a sphere, and on the hemispheres into which the circle divides the sphere.. The Riemannian unit circle of length 2 π can be embedded, without any change of distance, into the metric of geodesics on a unit sphere, by mapping the circle to a great circle and its metric to great-circle distance.
In taxicab geometry, the lengths of the red, blue, green, and yellow paths all equal 12, the taxicab distance between the opposite corners, and all four paths are shortest paths. Instead, in Euclidean geometry, the red, blue, and yellow paths still have length 12 but the green path is the unique shortest path, with length equal to the Euclidean ...
Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term unit disk is used for the open unit disk about the origin , D 1 ( 0 ) {\displaystyle D_{1}(0)} , with respect to the standard ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
The recursion terminates when P is empty, and a solution can be found from the points in R: for 0 or 1 points the solution is trivial, for 2 points the minimal circle has its center at the midpoint between the two points, and for 3 points the circle is the circumcircle of the triangle described by the points.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that