enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subset - Wikipedia

    en.wikipedia.org/wiki/Subset

    The set {x: x is a prime number greater than 10} is a proper subset of {x: x is an odd number greater than 10} The set of natural numbers is a proper subset of the set of rational numbers; likewise, the set of points in a line segment is a proper subset of the set of points in a line.

  3. Empty set - Wikipedia

    en.wikipedia.org/wiki/Empty_set

    The only subset of the empty set is the empty set itself; equivalently, the power set of the empty set is the set containing only the empty set. The number of elements of the empty set (i.e., its cardinality) is zero. The empty set is the only set with either of these properties. For any set A: The empty set is a subset of A

  4. Family of sets - Wikipedia

    en.wikipedia.org/wiki/Family_of_sets

    In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A third pair of operators ⊂ and ⊃ are used differently by different authors: some authors use A ⊂ B and B ⊃ A to mean A is any subset of B (and not necessarily a proper subset), [33] [24] while others reserve A ⊂ B and B ⊃ A for cases where A is a proper subset of B. [31] Examples: The set of all humans is a proper subset of the set ...

  6. Dense set - Wikipedia

    en.wikipedia.org/wiki/Dense_set

    In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine ...

  7. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠, and the set of all subsets of the set of natural numbers.

  8. Null set - Wikipedia

    en.wikipedia.org/wiki/Null_set

    Every finite or countably infinite subset of the real numbers ⁠ ⁠ is a null set. For example, the set of natural numbers ⁠ ⁠, the set of rational numbers ⁠ ⁠ and the set of algebraic numbers ⁠ ⁠ are all countably infinite and therefore are null sets when considered as subsets of the real numbers.

  9. Ordinal number - Wikipedia

    en.wikipedia.org/wiki/Ordinal_number

    Cantor called the set of finite ordinals the first number class. The second number class is the set of ordinals whose predecessors form a countably infinite set. The set of all α having countably many predecessors—that is, the set of countable ordinals—is the union of these two number classes. Cantor proved that the cardinality of the ...