enow.com Web Search

  1. Ad

    related to: binomial expansion for negative exponents examples
  2. education.com has been visited by 100K+ users in the past month

    • Educational Songs

      Explore catchy, kid-friendly tunes

      to get your kids excited to learn.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    The first results concerning binomial series for other than positive-integer exponents were given by Sir Isaac Newton in the study of areas enclosed under certain curves. John Wallis built upon this work by considering expressions of the form y = (1 − x 2 ) m where m is a fraction.

  4. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The benefit of this approximation is that is converted from an exponent to a multiplicative factor. This can greatly simplify mathematical expressions (as in the example below) and is a common tool in physics. [1] The approximation can be proven several ways, and is closely related to the binomial theorem.

  5. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  6. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.

  7. Binomial (polynomial) - Wikipedia

    en.wikipedia.org/wiki/Binomial_(polynomial)

    A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.

  8. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).

  9. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Via the binomial theorem expansion, for even , the formula returns . This is expected as one can prove that the number of leaves of a binary tree are one more than the number of its internal nodes, so the total sum should always be an odd number.

  1. Ad

    related to: binomial expansion for negative exponents examples