Search results
Results from the WOW.Com Content Network
Visualization of a software buffer overflow. Data is written into A, but is too large to fit within A, so it overflows into B.. In programming and information security, a buffer overflow or buffer overrun is an anomaly whereby a program writes data to a buffer beyond the buffer's allocated memory, overwriting adjacent memory locations.
A NOP-sled is the oldest and most widely known technique for exploiting stack buffer overflows. [2] It solves the problem of finding the exact address of the buffer by effectively increasing the size of the target area. To do this, much larger sections of the stack are corrupted with the no-op machine instruction.
In an actual stack buffer overflow exploit the string of "A"'s would instead be shellcode suitable to the platform and desired function. If this program had special privileges (e.g. the SUID bit set to run as the superuser ), then the attacker could use this vulnerability to gain superuser privileges on the affected machine.
A "return-to-libc" attack is a computer security attack usually starting with a buffer overflow in which a subroutine return address on a call stack is replaced by an address of a subroutine that is already present in the process executable memory, bypassing the no-execute bit feature (if present) and ridding the attacker of the need to inject their own code.
An accidental overflow may result in data corruption or unexpected behavior by any process that accesses the affected memory area. On operating systems without memory protection, this could be any process on the system. For example, a Microsoft JPEG GDI+ buffer overflow vulnerability could allow remote execution of code on the affected machine. [1]
Canaries or canary words or stack cookies are known values that are placed between a buffer and control data on the stack to monitor buffer overflows. When the buffer overflows, the first data to be corrupted will usually be the canary, and a failed verification of the canary data will therefore alert of an overflow, which can then be handled, for example, by invalidating the corrupted data.
The worm spread itself using a common type of vulnerability known as a buffer overflow. It did this by using a long string of the repeated letter 'N' to overflow a buffer, allowing the worm to execute arbitrary code and infect the machine with the worm.
Local shellcode is used by an attacker who has limited access to a machine but can exploit a vulnerability, for example a buffer overflow, in a higher-privileged process on that machine. If successfully executed, the shellcode will provide the attacker access to the machine with the same higher privileges as the targeted process.