enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enthalpy of fusion - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_fusion

    The enthalpy of fusion is the amount of energy required to convert one mole of solid into liquid. For example, when melting 1 kg of ice (at 0 °C under a wide range of pressures), 333.55 kJ of energy is absorbed with no temperature change. The heat of solidification (when a substance changes from liquid to solid) is equal and opposite.

  3. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    For example, the heat capacity of water ice at the melting point is about 4.6R per mole of molecules, but only 1.5R per mole of atoms. The lower than 3 R number "per atom" (as is the case with diamond and beryllium) results from the “freezing out” of possible vibration modes for light atoms at suitably low temperatures, just as in many low ...

  4. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    Therefore, the specific heat (per unit of mass, not per mole) of a monatomic gas will be inversely proportional to its (adimensional) relative atomic mass A. That is, approximately, c V = (12470 J⋅K −1 ⋅kg −1)/A c P = (20786 J⋅K −1 ⋅kg −1)/A

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)

  6. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  7. Molar mass - Wikipedia

    en.wikipedia.org/wiki/Molar_mass

    The mole was defined in such a way that the molar mass of a compound, in g/mol, is numerically equal to the average mass of one molecule or formula unit, in daltons. It was exactly equal before the redefinition of the mole in 2019, and is now only approximately equal, but the difference is negligible for all practical purposes.

  8. Chemical potential - Wikipedia

    en.wikipedia.org/wiki/Chemical_potential

    When some of the ice melts, H 2 O molecules convert from solid to the warmer liquid where their chemical potential is lower, so the ice cube shrinks. At the temperature of the melting point, 0 °C, the chemical potentials in water and ice are the same; the ice cube neither grows nor shrinks, and the system is in equilibrium.

  9. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    In thermodynamics, the specific volume of a substance (symbol: ν, nu) is the quotient of the substance's volume (V) to its mass (m): = It is a mass-specific intrinsic property of the substance. It is the reciprocal of density ρ and it is also related to the molar volume and molar mass: