enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. File:Parameter estimation process infinite Gaussian mixture ...

    en.wikipedia.org/wiki/File:Parameter_estimation...

    Histograms for one-dimensional datapoints belonging to clusters detected by an infinite Gaussian mixture model. During the parameter estimation based on Gibbs sampling , new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.

  4. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  5. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem. [2] EM clustering of Old Faithful eruption data. The random initial model (which, due to the different scales of the axes, appears to be two very flat and wide ellipses) is fit to the observed data.

  6. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  7. GMM - Wikipedia

    en.wikipedia.org/wiki/GMM

    GMM may refer to: Generalized method of moments, an econometric method; GMM Grammy, a Thai entertainment company; Gaussian mixture model, a statistical probabilistic model; Google Map Maker, a public cartography project; GMM, IATA code for Gamboma Airport in the Republic of the Congo

  8. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    [60]: 354, 11.4.2.5 This does not mean that it is efficient to use Gaussian mixture modelling to compute k-means, but just that there is a theoretical relationship, and that Gaussian mixture modelling can be interpreted as a generalization of k-means; on the contrary, it has been suggested to use k-means clustering to find starting points for ...

  9. Subspace Gaussian mixture model - Wikipedia

    en.wikipedia.org/.../Subspace_Gaussian_mixture_model

    Subspace Gaussian mixture model (SGMM) is an acoustic modeling approach in which all phonetic states share a common Gaussian mixture model structure, and the means and mixture weights vary in a subspace of the total parameter space.