enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. String-searching algorithm - Wikipedia

    en.wikipedia.org/wiki/String-searching_algorithm

    A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.

  3. Boyer–Moore string-search algorithm - Wikipedia

    en.wikipedia.org/wiki/Boyer–Moore_string-search...

    The Boyer–Moore algorithm searches for occurrences of P in T by performing explicit character comparisons at different alignments. Instead of a brute-force search of all alignments (of which there are ⁠ + ⁠), Boyer–Moore uses information gained by preprocessing P to skip as many alignments as possible.

  4. Comparison of programming languages (string functions)

    en.wikipedia.org/wiki/Comparison_of_programming...

    For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.

  5. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).

  6. Knuth–Morris–Pratt algorithm - Wikipedia

    en.wikipedia.org/wiki/Knuth–Morris–Pratt...

    A string-matching algorithm wants to find the starting index m in string S[] that matches the search word W[].. The most straightforward algorithm, known as the "brute-force" or "naive" algorithm, is to look for a word match at each index m, i.e. the position in the string being searched that corresponds to the character S[m].

  7. String (computer science) - Wikipedia

    en.wikipedia.org/wiki/String_(computer_science)

    Both character termination and length codes limit strings: For example, C character arrays that contain null (NUL) characters cannot be handled directly by C string library functions: Strings using a length code are limited to the maximum value of the length code. Both of these limitations can be overcome by clever programming.

  8. Ternary search tree - Wikipedia

    en.wikipedia.org/wiki/Ternary_search_tree

    If the first character of the string is less than the character in the root node, a recursive lookup can be called on the tree whose root is the lo kid of the current root. Similarly, if the first character is greater than the current node in the tree, then a recursive call can be made to the tree whose root is the hi kid of the current node. [1]

  9. Aho–Corasick algorithm - Wikipedia

    en.wikipedia.org/wiki/Aho–Corasick_algorithm

    In this example, we will consider a dictionary consisting of the following words: {a, ab, bab, bc, bca, c, caa}. The graph below is the Aho–Corasick data structure constructed from the specified dictionary, with each row in the table representing a node in the trie, with the column path indicating the (unique) sequence of characters from the root to the node.