Search results
Results from the WOW.Com Content Network
The most vexing parse is a counterintuitive form of syntactic ambiguity resolution in the C++ programming language. In certain situations, the C++ grammar cannot distinguish between the creation of an object parameter and specification of a function's type.
Initialization is distinct from (and preceded by) declaration, although the two can sometimes be conflated in practice. The complement of initialization is finalization, which is primarily used for objects, but not variables. Initialization is done either by statically embedding the value at compile time, or else by assignment at run time.
In the C programming language, struct is the keyword used to define a composite, a.k.a. record, data type – a named set of values that occupy a block of memory. It allows for the different values to be accessed via a single identifier, often a pointer.
In computer programming, lazy initialization is the tactic of delaying the creation of an object, the calculation of a value, or some other expensive process until the first time it is needed.
A class in C++ is a user-defined type or data structure declared with any of the keywords class, struct or union (the first two are collectively referred to as non-union classes) that has data and functions (also called member variables and member functions) as its members whose access is governed by the three access specifiers private, protected or public.
In the above example, the function Base<Derived>::interface(), though declared before the existence of the struct Derived is known by the compiler (i.e., before Derived is declared), is not actually instantiated by the compiler until it is actually called by some later code which occurs after the declaration of Derived (not shown in the above ...
C++03 inherited the initializer-list feature from C. A struct or array is given a list of arguments in braces, in the order of the members' definitions in the struct. These initializer-lists are recursive, so an array of structs or struct containing other structs can use them.
The C++ standard library instead provides a dynamic array (collection) that can be extended or reduced in its std::vector template class. The C++ standard does not specify any relation between new / delete and the C memory allocation routines, but new and delete are typically implemented as wrappers around malloc and free . [ 6 ]